guogdootdbood

goooo
gbgobgoboobon

gbogobgoobg 0o



Contents.

© Introduction.
@ Definition of axioms of finite order arithmetic.
© Higher rank axioms imply lower rank axioms.

© The hierarchy of comprehension axioms.

© Reverse mathematics related to comprehension.

@ The hierarchy of choice axioms.

@ Reverse mathematics related to choice.

(00000oO0oOoOoOoOoooO) 0oooO00o0000oD

2/25



Introduction.

Finite order arithmetic is a formal system based on A-culiculus.

sorts.
O My —N
@ M,_,, «— the set of all maps M, to M.

where o and 7 are given sorts.

In short, 0 — O is denoted by 1. similarly n — O is denoted by
n+1 o, — (02 — 7) is denoted by (01, 0) — 7.
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Introduction.

Language.
@ (Constants) 0, S,Ro, - - ,
@ (1-abstructions) AX7.t* (the sortis o — 71.)
@ (Applications) t7~7(s”) (the sortis 7.)

where t and s are given terms, X is a variable symbol.
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Introduction.

Language.
@ (Constants) 0, S,Ro, - - ,
@ (1-abstructions) AX7.t* (the sortis o — 71.)
@ (Applications) t7~7(s”) (the sortis 7.)

where t and s are given terms, X is a variable symbol.

axiom of A-caliculus.

@ (A-reduction)
(AXT ) (S7) = t[s/X].

@ (extentionality)

YXTTIVYTT (X =y © VZ7(X(2) = ¥(2)).
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Introduction.

There is natural translation from the system of second order
arithmetic to finite order arithmetic and finite order arithmetic to
set theory.

translation from S.0O.A. to FO.A.

M: A model of finite order arithmetic.
— (Mo, {X € My[Vn e My(X(n) € {0, 1})}).
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Introduction.

There is natural translation from the system of second order
arithmetic to finite order arithmetic and finite order arithmetic to
set theory.

translation from S.0O.A. to FO.A.

M: A model of finite order arithmetic.
— (Mo, {X € My[Vn e My(X(n) € {0, 1})}).

translation from F.O.A. to set theory.
V: A model of set theory.

N Mo = wV,
M(r—)r {f : MO’ - MT}V'
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Introduction.

Strength of S.0.A., EO.A. and set theory is as follows.

relation of axioms of S.O.A. and FO.A.

@ (Kohlenbach, 2005) An axiom RCAj of FO.A., our base
axiom, is conservative extension of an axiom RCAg of S.O.A.

@ (Hunter, 2008) RCAj + (&,) is conservative extension of
ACA,.

@ (Hunter, 2008) RCAj + (&) is conservative extension of Z,.
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Introduction.

Strength of S.0.A., EO.A. and set theory is as follows.

relation of axioms of S.O.A. and FO.A.

@ (Kohlenbach, 2005) An axiom RCAj of FO.A., our base
axiom, is conservative extension of an axiom RCAg of S.O.A.

@ (Hunter, 2008) RCAj + (&,) is conservative extension of
ACA,.

@ (Hunter, 2008) RCAj + (&) is conservative extension of Z,.

relation of axioms of FO.A. and set theoty.
@ ZF+ RCAj + & + Con(RCA; + (86)).
@ ZFC+ RCAG + &+ FAC + Con(RCA; + (&) + FAC).

where & and FAC are the axiom of comprehension and the axiom
of choice of finite order arithmetic respectively.
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Introduction.

How do we consider "abstruct theories” in finite
order aritmetic

@ Abstract mathematics are formalized by the following sense:
If we do not fix the sort, the mood of arbitrary set could be
represented.
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Introduction.

How do we consider "abstruct theories” in finite
order aritmetic

@ Abstract mathematics are formalized by the following sense:
If we do not fix the sort, the mood of arbitrary set could be
represented.

@ Many axioms (e.g. axiom of comprehension, choice,
recursion or continuum hypothesis) are different for each
sort. Finer analysis than set theory could be done.
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Definition of axioms of finite order arithmetic.

2. Definition of axioms of finite order arithmetic.
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Definition of axioms of finite order arithmetic.

RCA; is the axiom consists of the following formulas.
@ The axiom of A-calculus.
@ VX(3Y°(x = S(y)) < x # 0), VXVY(S(X) = S(y) —» X =)
@ (Existence of primitive recursion operator.)

Ro(f,n)(0) = n

ARGV F1Ynlym’ Ro(fM)(S(M) = F(m Ro(f. N)(m).

@ (Induction axiom.)
VAL 0 e AAVYNO(ne A — S(n) € A) — Vn(n € A)).

@ (Axiom of choice for (1, 0).)
VARO[ (yxIqyP(x, y) € A) - (R0 x(x, F(X)) € A)].

Where 0° and S* are constant symbols.
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Definition of axioms of finite order arithmetic.

Definition.
@ Q-CA™: AX™W X (x € X & ¢(X))
where ¢ is described by =, Boolean connections and
o variable quantifiers dy”, Vy“.

® &0 AEIXTx € E & VyTX(y) = 0)
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Definition of axioms of finite order arithmetic.

Definition.
@ Q-CA™: AX™W X (x € X & ¢(X))
where ¢ is described by =, Boolean connections and
o variable quantifiers dy”, Vy“.

@ &, AEC0-0yx=0(x € E « Vy“X(y) = 0)
@ FAC”™: VALCI=O(yxe3y™((x,y) € A) — AF77((x, F(X)) € A)).
e GAC”™:

VA(O',T)—>O vxfray‘r’ (X’ y) €A

AGEI=0G c AA (VA (X y) €G) |
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Definition of axioms of finite order arithmetic.

Definition.
@ Q-CA™: AX™W X (x € X & ¢(X))
where ¢ is described by =, Boolean connections and
o variable quantifiers dy”, Vy“.

@ &, AEC0-0yx=0(x € E « Vy“X(y) = 0)
@ FAC”™: VALCI=O(yxe3y™((x,y) € A) — AF77((x, F(X)) € A)).
e GAC”™:

VA(O',T)—>O vxfray‘r’ (X’ y) €A

AGEI=0G c AA (VA (X y) €G) |

Proposition.
{Q7-CA"} is equivalent to (E,-,0) over RCAy.
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Higher rank axioms imply lower rank axioms.

3. Higher rank axioms imply lower rank axioms.
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Higher rank axioms imply lower rank axioms.

Definition. (the rank of sorts)
The rank of sort is defined as follows inductively.

0
max(ank(c) + 1, rank(r))

rank(0)
rank(oc — 7)

Intuitively, rank is corresponded to the cardinality of the set of all
elements. rank(0) = 0 means Mg is countable, rank = 1 means
continuum, rank = 2 is to have cardinality of power set of
continuum...
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Higher rank axioms imply lower rank axioms.

Lemma.
Assume rank(o) < rank(c”’), then the assertion

31777 AP =Y X (P(1(X)) = X)

is provable in RCAy.
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Higher rank axioms imply lower rank axioms.

Lemma.
Assume rank(o) < rank(c”’), then the assertion

31777 AP =Y X (P(1(X)) = X)
is provable in RCAy.

Proposition.

Let o, 0’, 7,7’ be sorts and assume
rank(o) < rank(c”’), rank(r) < rank(z’). Then the following
statements are provable in RCAy.

o (80"—>0) i (80—>0)-
@ FAC”™ — FAC .
© GAC”™ — GAC" .
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The hierarchy of comprehension axioms.

4. The hierarchy of comprehension axioms.
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The hierarchy of comprehension axioms.

Theorem.

Letn> 1and T be a "Q"-definable” set of Q<"-!-sentences. Then
the following holds.

RCAY + En1 + T+ Con(RCA + E, + T).

Thus, RCAG + &, does not imply Ep,a.

The idea of proof: Fix a model M of RCAg + Enr + T.
The theorem is proved by some construction in M. It is consists
of 3 steps.

@ To construct a model consists of all "A-terms” generated by
Uj<n-1 M U {S, Ro, En} U {variable symbols
@ To construct the interpretation of rank< n — 1 elements in M.

© To construct the graph of the truth value function and to
check the axioms.
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Reverse mathematics related to comprehension.

5. Reverse mathematics related to comprehension.
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Reverse mathematics related to comprehension.

Definition.
AJ-CA™

VAVB YX'(EAY"; (X y) € A) & (YZ; (%, 2) € B))
— AXYX(x e X & Ay; (XY) € A

Definition.

Z0-IA:

ax; (0, x) € A A YKk(AX; (k, X) € A— 3x; (S(k), X) € A) ]

o,n
e [_> viAx: (k. X) € A
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Reverse mathematics related to comprehension.

Proposition.

The following statements are equivalent over

RCAG + A7-CA" + Z7-IA.

1. [Qn'CAn / 8n+1]-

2. There exists [a subgroug\Z a functionalA maps 2\] for all
n-type abelian group (represented by graphs).

compare: RCAy+"every countable abelian group A, there exists
2A" implies ACA.
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Reverse mathematics related to comprehension.

Proposition.

The following statements are equivalent over

RCAS + AT-CA" + X1-IA.

1. [Qn'CAn / 8n+l]-

2. There exists [a subgroug\Z a functionalA maps 2\] for all
n-type abelian group (represented by graphs).

compare: RCAy+"every countable abelian group A, there exists
2A" implies ACA.
Proposition.

The following statement implies"@CA" over
RCAS + AT-CA" + X1-1A:

Everyn-type non-zero commutative ring has a maximal ideal.

compare: RCAy+"every countable commutative ring has a
maximal ideal” implies ACA.
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The hierarchy of choice axioms.

6. The hierarchy of choice axioms.
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The hierarchy of choice axioms.

Definition.
@ (0-WWO) 1 <(< is a well-ordering on 3,..)
< is a well-ordering on 3,
G ={(X,y)IX c 3,y = minX}

< is a well-ordering on 3,
¥X # 0; F(X) = minX

@ (0-GWO) 7 <,G(

Q (0-FWO) 1 <, F(

Q (n-TR)
VA, X, <; WO(X, <) — JYVX", o™

Xa)eY o (@ae XAXAY.BB <a. (B €Y})eA
Here WQ(X, <) is the assertion that < is a well ordering on a set
X.
{(y,B)IB < a, (Y,B) € Y}) € Ais described as the following form:
AZ((x, Z) € AAVY,B;
V.B)eZ o BeXAB<an(y{zyly<B.(zy)eZ) <)
Thus RCAG + Ensz F N-TR holds.
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The hierarchy of choice axioms.

Proposition.

The following statements hold.
@ RCAY + (Eny2) + FAC™" 1 n-FWO.
@ RCAY +n-FWO+ FAC™M A (Epy1).
© RCAY + (Eny2) + GAC™M - n-GWO.
@ RCAY + (En41) + -GWO + GAC™",
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The hierarchy of choice axioms.

Proposition.

The following statements hold.
@ RCAY + (Eny2) + FAC™" 1 n-FWO.
@ RCAY +n-FWO+ FAC™M A (Epy1).
© RCAY + (Eny2) + GAC™M - n-GWO.
@ RCAY + (En41) + -GWO + GAC™",

Theorem.
The following statements hold.

RCAY + (Ens2) + FAC™"  Con(RCA; + n-FWO).

The proof is the same except N is generated by
Mo U {S, Ro, <, min} where < is a well ordering of M,, and minis
the map A c M, to the minimum element of (A, <).
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The hierarchy of choice axioms.

Definition. (Multiple choice)
MC?7:Y Al-1)=0

Vxay((xy) € A)
FcA
— AF@D=0f A vxAy((X,y) € F)
A VxAPIL=TVY((X,Y) € F < As < t(y = (9)))

Proposition.

RCAS + Epya + MC™H" 1 n-GWO.
Especially, MC™" GAC™!" andn-GWO are equivalent over
RCAL + Ensa.
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Reverse mathematics related to choice.

7. Reverse mathematics related to choice.
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Reverse mathematics related to choice.

Proposition.

The following statement is provable in RGA n-FWO + n-TR:
Everyn-type vector space overratype field has a basis.

Proposition.

"Every n-type vector space overratype field has a basis” implies
MC"" over RCA.

compare: The following statements are equivalent over ZF:
1. Axiom of choice in set theory.

2. Multiple choice in set theory.

3. Every vector field has a basis.
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Reverse mathematics related to choice.

@ Ulrich Kohlenbach, Higher Order Reverse Mathematics,
Lecture Notes in Logic, 2001

@ James Hunter, Higher-Order Reverse Topology, Ph.D Thesis
University of Wisconsin, 2008

© Stephen G. Simpson, Subsystems of Second Order
Arithmetic second edition, Springer-Verlag, 2009

@ Thomas J. Jech, The Axiom of Choice, North-Holland, 1973

© Andreas Blass, Existence of Bases Implies the Axiom of
Choice, Contemporary Mathematics, vol 31(1984)
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