高階算術における抽象論

井澤 昇平

東北大学理学研究科数学専攻

数学基礎論若手の会 '10

Contents.

- Introduction.
- Definition of axioms of finite order arithmetic.
- Higher rank axioms imply lower rank axioms.
- The hierarchy of comprehension axioms.
- Reverse mathematics related to comprehension.
- The hierarchy of choice axioms.
- Reverse mathematics related to choice.

Finite order arithmetic is a formal system based on λ -culiculus.

sorts.

- 2 $\mathcal{M}_{\sigma \to \tau} \longleftrightarrow$ the set of all maps \mathcal{M}_{σ} to \mathcal{M}_{τ}

where σ and τ are given sorts.

In short, $0 \to 0$ is denoted by 1. similarly $n \to 0$ is denoted by n+1. $\sigma_1 \to (\sigma_2 \to \tau)$ is denoted by $(\sigma_1, \sigma_2) \to \tau$.

Language.

- (Constants) $0, S, \mathcal{R}_0, \cdots$,
- (λ -abstructions) $\lambda x^{\sigma}.t^{\tau}$ (the sort is $\sigma \to \tau$.)
- (Applications) $t^{\sigma \to \tau}(s^{\sigma})$ (the sort is τ .)

where t and s are given terms, x is a variable symbol.

axiom of λ -caliculus.

(λ-reduction)

$$(\lambda x^{\sigma}.t^{\tau})(s^{\sigma}) = t[s/x]$$

(extentionality)

$$\forall x^{\sigma \to \tau} \forall y^{\sigma \to \tau} (x = y \leftrightarrow \forall z^{\sigma} (x(z) = y(z))).$$

Language.

- (Constants) $0, S, \mathcal{R}_0, \cdots$,
- (λ -abstructions) $\lambda x^{\sigma}.t^{\tau}$ (the sort is $\sigma \to \tau$.)
- (Applications) $t^{\sigma \to \tau}(s^{\sigma})$ (the sort is τ .)

where t and s are given terms, x is a variable symbol.

axiom of λ -caliculus.

(λ-reduction)

$$(\lambda x^{\sigma}.t^{\tau})(s^{\sigma}) = t[s/x].$$

(extentionality)

$$\forall x^{\sigma \to \tau} \forall y^{\sigma \to \tau} (x = y \leftrightarrow \forall z^{\sigma} (x(z) = y(z))).$$

There is natural translation from the system of second order arithmetic to finite order arithmetic and finite order arithmetic to set theory.

translation from S.O.A. to F.O.A.

M: A model of finite order arithmetic.

$$\longrightarrow (\mathcal{M}_0, \{X \in \mathcal{M}_1 | \forall n \in \mathcal{M}_0(X(n) \in \{0, 1\})\}).$$

translation from F.O.A. to set theory.

V: A model of set theory.

$$\longrightarrow \left\{ \begin{array}{rcl} \mathcal{M}_0 &=& \omega^V, \\ \mathcal{M}_{\sigma \to \tau} &=& \{f: \mathcal{M}_\sigma \to \mathcal{M}_\tau\}^V. \end{array} \right.$$

There is natural translation from the system of second order arithmetic to finite order arithmetic and finite order arithmetic to set theory.

translation from S.O.A. to F.O.A.

M: A model of finite order arithmetic.

$$\longrightarrow (\mathcal{M}_0, \{X \in \mathcal{M}_1 | \forall n \in \mathcal{M}_0(X(n) \in \{0, 1\})\}).$$

translation from F.O.A. to set theory.

V: A model of set theory.

$$\longrightarrow \left\{ \begin{array}{rcl} \mathcal{M}_0 &=& \omega^V, \\ \mathcal{M}_{\sigma \to \tau} &=& \{f : \mathcal{M}_\sigma \to \mathcal{M}_\tau\}^V. \end{array} \right.$$

Strength of S.O.A., F.O.A. and set theory is as follows.

relation of axioms of S.O.A. and F.O.A.

- (Kohlenbach, 2005) An axiom RCA₀^ω of F.O.A., our base axiom, is conservative extension of an axiom RCA₀ of S.O.A.
- (Hunter, 2008) $RCA_0^{\omega} + (\mathcal{E}_1)$ is conservative extension of ACA_0 .
- (Hunter, 2008) $RCA_0^{\omega} + (\mathcal{E}_2)$ is conservative extension of Z_2 .

relation of axioms of F.O.A. and set theoty

- $ZF + RCA_0^{\omega} + \mathcal{E} + Con(RCA_0^{\omega} + (\mathcal{E})).$
- ZFC + RCA₀^{ω} + \mathcal{E} + FAC + Con(RCA₀^{ω} + (\mathcal{E}) + FAC).

where \mathcal{E} and FAC are the axiom of comprehension and the axiom of choice of finite order arithmetic respectively.

Strength of S.O.A., F.O.A. and set theory is as follows.

relation of axioms of S.O.A. and F.O.A.

- (Kohlenbach, 2005) An axiom RCA₀^ω of F.O.A., our base axiom, is conservative extension of an axiom RCA₀ of S.O.A.
- (Hunter, 2008) $RCA_0^{\omega} + (\mathcal{E}_1)$ is conservative extension of ACA_0 .
- (Hunter, 2008) $RCA_0^{\omega} + (\mathcal{E}_2)$ is conservative extension of Z_2 .

relation of axioms of F.O.A. and set theoty.

- $ZF + RCA_0^{\omega} + \mathcal{E} + Con(RCA_0^{\omega} + (\mathcal{E})).$
- ZFC \vdash RCA₀^{ω} + \mathcal{E} + FAC + Con(RCA₀^{ω} + (\mathcal{E}) + FAC).

where \mathcal{E} and FAC are the axiom of comprehension and the axiom of choice of finite order arithmetic respectively.

How do we consider "abstruct theories" in finite order aritmetic

- Abstract mathematics are formalized by the following sense:
 If we do not fix the sort, the mood of arbitrary set could be represented.
- Many axioms (e.g. axiom of comprehension, choice, recursion or continuum hypothesis) are different for each sort. Finer analysis than set theory could be done.

How do we consider "abstruct theories" in finite order aritmetic

- Abstract mathematics are formalized by the following sense:
 If we do not fix the sort, the mood of arbitrary set could be represented.
- Many axioms (e.g. axiom of comprehension, choice, recursion or continuum hypothesis) are different for each sort. Finer analysis than set theory could be done.

2. Definition of axioms of finite order arithmetic.

- Introduction.
- Definition of axioms of finite order arithmetic.
- Higher rank axioms imply lower rank axioms.
- The hierarchy of comprehension axioms.
- Reverse mathematics related to comprehension.
- The hierarchy of choice axioms.
- Reverse mathematics related to choice.

RCA_0^{ω} is the axiom consists of the following formulas.

- The axiom of λ -calculus.
- $\bullet \ \forall x^0 (\exists y^0 (x = S(y)) \leftrightarrow x \neq 0), \forall x^0 \forall y^0 (S(x) = S(y) \rightarrow x = y)$
- (Existence of primitive recursion operator.)

$$\exists \mathcal{R}_0 \forall f^1 \forall n^0 \forall m^0 \left[\begin{array}{ccc} \mathcal{R}_0(f,n)(0) &=& n, \\ \mathcal{R}_0(f,n)(S(m)) &=& f(m,\mathcal{R}_0(f,n)(m)). \end{array} \right]$$

(Induction axiom.)

$$\forall A^1(0 \in A \land \forall n^0 (n \in A \to S(n) \in A) \to \forall n(n \in A)).$$

• (Axiom of choice for (1,0).)

$$\forall A^{(1,0)\to 0)}[(\forall x^1\exists y^0(x,y)\in A)\to (\exists F^{1\to 0}\forall x(x,F(x))\in A)].$$

Where 0^0 and S^1 are constant symbols.

- Q^σ-CA^τ: ∃X^{τ→0}∀x^τ(x ∈ X ↔ φ(x))
 where φ is described by =₀, Boolean connections and
 σ variable quantifiers ∃y^σ, ∀y^σ.
- $\bullet \ \mathcal{E}_{\sigma \to 0} : \exists E^{(\sigma \to 0) \to 0} \forall x^{\sigma \to 0} (x \in E \leftrightarrow \forall y^{\sigma} x(y) = 0)$
- FAC $^{\sigma,\tau}$: $\forall A^{(\sigma,\tau)\to 0}(\forall x^{\sigma}\exists y^{\tau}((x,y)\in A)\to \exists F^{\sigma\to\tau}((x,F(x))\in A)).$
- $\bullet \ \mathsf{GAC}^{\sigma,\tau} \colon \\ \forall A^{(\sigma,\tau)\to 0} \left(\begin{array}{c} \forall x^{\sigma} \exists y^{\tau}; (x,y) \in A \\ \to \exists G^{(\sigma,\tau)\to 0} (G \subset A \land (\forall x \exists ! y; (x,y) \in G) \end{array} \right) .$

Proposition.

 $\{Q^{\sigma}\text{-}CA^{\tau}\}_{\tau}$ is equivalent to $(\mathcal{E}_{\sigma\to 0})$ over RCA_0^{ω} .

- Q^σ-CA^τ: ∃X^{τ→0}∀x^τ(x ∈ X ↔ φ(x))
 where φ is described by =₀, Boolean connections and
 σ variable quantifiers ∃y^σ, ∀y^σ.
- $\mathcal{E}_{\sigma \to 0} : \exists E^{(\sigma \to 0) \to 0} \forall x^{\sigma \to 0} (x \in E \leftrightarrow \forall y^{\sigma} x(y) = 0)$
- FAC $^{\sigma,\tau}$: $\forall A^{(\sigma,\tau)\to 0}(\forall x^{\sigma}\exists y^{\tau}((x,y)\in A)\to \exists F^{\sigma\to\tau}((x,F(x))\in A)).$
- $\bullet \ \operatorname{GAC}^{\sigma,\tau} \colon \\ \forall A^{(\sigma,\tau)\to 0} \left(\begin{array}{c} \forall x^{\sigma} \exists y^{\tau}; (x,y) \in A \\ \to \exists G^{(\sigma,\tau)\to 0} (G \subset A \land (\forall x \exists ! y; (x,y) \in G) \end{array} \right).$

Proposition.

 $\{Q^{\sigma}\text{-}CA^{\tau}\}_{\tau}$ is equivalent to $(\mathcal{E}_{\sigma\to 0})$ over RCA_0^{ω} .

- Q^{σ} - CA^{τ} : $\exists X^{\tau \to 0} \forall x^{\tau} (x \in X \leftrightarrow \varphi(x))$ where φ is described by $=_0$, Boolean connections and σ variable quantifiers $\exists y^{\sigma}, \forall y^{\sigma}$
- $\mathcal{E}_{\sigma \to 0}$: $\exists E^{(\sigma \to 0) \to 0} \forall x^{\sigma \to 0} (x \in E \leftrightarrow \forall y^{\sigma} x(y) = 0)$
- FAC $^{\sigma,\tau}$: $\forall A^{(\sigma,\tau)\to 0}(\forall x^{\sigma} \exists y^{\tau}((x,y) \in A) \to \exists F^{\sigma\to\tau}((x,F(x)) \in A)).$
- GAC $^{\sigma,\tau}$:

$$\forall A^{(\sigma,\tau)\to 0} \left(\begin{array}{c} \forall x^{\sigma} \exists y^{\tau}; (x,y) \in A \\ \to \exists G^{(\sigma,\tau)\to 0} (G \subset A \land (\forall x \exists ! y; (x,y) \in G) \end{array} \right).$$

Proposition.

 $\{Q^{\sigma}\text{-}CA^{\tau}\}_{\tau}$ is equivalent to $(\mathcal{E}_{\sigma\to 0})$ over RCA_0^{ω} .

3. Higher rank axioms imply lower rank axioms.

- Introduction.
- Definition of axioms of finite order arithmetic.
- Higher rank axioms imply lower rank axioms.
- The hierarchy of comprehension axioms.
- Reverse mathematics related to comprehension.
- The hierarchy of choice axioms.
- Reverse mathematics related to choice.

Definition. (the rank of sorts)

The rank of sort is defined as follows inductively.

$$rank(0) := 0$$

 $rank(\sigma \to \tau) := \max(rank(\sigma) + 1, rank(\tau))$

Intuitively, rank is corresponded to the cardinality of the set of all elements. rank(0) = 0 means \mathcal{M}_0 is countable, rank = 1 means continuum, rank = 2 is to have cardinality of power set of continuum...

Lemma.

Assume $rank(\sigma) \leq rank(\sigma')$, then the assertion

$$\exists I^{\sigma \to \sigma'} \exists P^{\sigma' \to \sigma} \forall x^{\sigma} (P(I(x)) = x)$$

is provable in RCA_0^{ω} .

Proposition.

Let $\sigma, \sigma', \tau, \tau'$ be sorts and assume $rank(\sigma) \leq rank(\sigma'), rank(\tau) \leq rank(\tau')$. Then the following statements are provable in RCA_0^{ω} .

- **2** $FAC^{\sigma',\tau'} \rightarrow FAC^{\sigma,\tau}$.

Lemma.

Assume $rank(\sigma) \leq rank(\sigma')$, then the assertion

$$\exists I^{\sigma \to \sigma'} \exists P^{\sigma' \to \sigma} \forall x^{\sigma} (P(I(x)) = x)$$

is provable in RCA_0^{ω} .

Proposition.

Let $\sigma, \sigma', \tau, \tau'$ be sorts and assume $rank(\sigma) \leq rank(\sigma'), rank(\tau) \leq rank(\tau')$. Then the following statements are provable in RCA_0^{ω} .

- $\bullet (\mathcal{E}_{\sigma'\to 0}) \to (\mathcal{E}_{\sigma\to 0}).$
- **2** $FAC^{\sigma',\tau'} \rightarrow FAC^{\sigma,\tau}$.
- **3** GAC σ',τ' → GAC σ,τ .

4. The hierarchy of comprehension axioms.

- Introduction.
- Definition of axioms of finite order arithmetic.
- Higher rank axioms imply lower rank axioms.
- The hierarchy of comprehension axioms.
- Reverse mathematics related to comprehension.
- The hierarchy of choice axioms.
- Reverse mathematics related to choice.

Theorem.

Let $n \ge 1$ and T be a "Q"-definable" set of $Q^{\le n-1}$ -sentences. Then the following holds.

$$RCA_0^{\omega} + \mathcal{E}_{n+1} + T \vdash Con(RCA_0^{\omega} + \mathcal{E}_n + T).$$

Thus, $RCA_0^{\omega} + \mathcal{E}_n$ does not imply \mathcal{E}_{n+1} .

The idea of proof: Fix a model \mathcal{M} of $RCA_0^{\omega} + \mathcal{E}_{n+1} + T$.

The theorem is proved by some construction in \mathcal{M} . It is consists of 3 steps.

- To construct a model consists of all " λ -terms" generated by $\bigcup_{j \le n-1} \mathcal{M}_j \cup \{S, \mathcal{R}_0, E_n\} \cup \{\text{variable symbols}\}.$
- 2 To construct the interpretation of rank $\leq n-1$ elements in \mathcal{M} .
- To construct the graph of the truth value function and to check the axioms.

5. Reverse mathematics related to comprehension.

- Introduction.
- Definition of axioms of finite order arithmetic.
- Higher rank axioms imply lower rank axioms.
- The hierarchy of comprehension axioms.
- Reverse mathematics related to comprehension.
- The hierarchy of choice axioms.
- Reverse mathematics related to choice.

 Δ_1^n -CAⁿ:

$$\forall A \forall B \left[\begin{array}{c} \forall x^n (\exists y^n; (x, y) \in A) \leftrightarrow (\forall z^n; (x, z) \in B)) \\ \rightarrow \exists X \forall x (x \in X \leftrightarrow \exists y; (x, y) \in A) \end{array} \right]$$

Definition.

 Σ_1^n -IA:

$$\forall A^{0,n} \left[\begin{array}{c} \exists x; (0,x) \in A \land \forall k (\exists x; (k,x) \in A \rightarrow \exists x; (S(k),x) \in A) \\ \rightarrow \forall k \exists x; (k,x) \in A \end{array} \right]$$

Proposition.

The following statements are equivalent over

$$RCA_0^{\omega} + \Delta_1^n - CA^n + \Sigma_1^n - IA.$$

- 1. $[Q^n-CA^n / \mathcal{E}_{n+1}].$
- 2. There exists [a subgroup 2*A* / a functional *A* maps 2*A*] for all *n*-type abelian group (represented by graphs).

compare: RCA_0 +"every countable abelian group A, there exists 2A" implies ACA.

Proposition.

The following statement implies Q^n -CAⁿ over

$$RCA_0^{\omega} + \Delta_1^n - CA^n + \Sigma_1^n - IA$$
:

Every *n*-type non-zero commutative ring has a maximal ideal.

compare: RCA₀+"every countable commutative ring has a maximal ideal" implies ACA.

Proposition.

The following statements are equivalent over

$$RCA_0^{\omega} + \Delta_1^n - CA^n + \Sigma_1^n - IA.$$

- 1. $[Q^n$ -CAⁿ / $\mathcal{E}_{n+1}]$.
- 2. There exists [a subgroup 2*A* / a functional *A* maps 2*A*] for all *n*-type abelian group (represented by graphs).

compare: RCA_0 +"every countable abelian group A, there exists 2A" implies ACA.

Proposition.

The following statement implies Q^n -CAⁿ over

$$RCA_0^{\omega} + \Delta_1^n - CA^n + \Sigma_1^n - IA$$
:

Every *n*-type non-zero commutative ring has a maximal ideal.

compare: RCA₀+"every countable commutative ring has a maximal ideal" implies ACA.

6. The hierarchy of choice axioms.

- Introduction.
- Definition of axioms of finite order arithmetic.
- Higher rank axioms imply lower rank axioms.
- The hierarchy of comprehension axioms.
- Reverse mathematics related to comprehension.
- The hierarchy of choice axioms.
- Reverse mathematics related to choice.

- **1** $(\sigma$ -WWO) \exists <(< is a well-ordering on \beth_{σ} .)
- 2 $(\sigma\text{-GWO}) \exists <, G$ $< \text{ is a well-ordering on } \beth_{\sigma}$ < G $= \{(X,y)|X \subset \beth_n, y = minX\}$
- **3** $(\sigma\text{-FWO}) \exists <, F \left(< \text{ is a well-ordering on } \exists_{\sigma} \right) \forall X \neq \emptyset; F(X) = minX$
- 4 (n-TR) $\forall A, X, <; WO(X, <) \rightarrow \exists Y \forall x^n, \alpha^n;$ $(x, \alpha) \in Y \leftrightarrow (\alpha \in X \land (x, \{(y, \beta) | \beta < \alpha, (y, \beta) \in Y\}) \in A)$

Here WO(X, <) is the assertion that < is a well ordering on a set X.

 $\{(y,\beta)|\beta<\alpha,(y,\beta)\in Y\})\in A$ is described as the following form:

$$\exists Z((x,Z) \in A \land \forall y, \beta; (y,\beta) \in Z \leftrightarrow (\beta \in X \land \beta < \alpha \land (y,\{(z,\gamma)|\gamma < \beta,(z,\gamma) \in Z\}) \in Z))$$

Thus $RCA_0^{\omega} + \mathcal{E}_{n+2} \vdash n\text{-TR holds}$.

Proposition.

The following statements hold.

2
$$RCA_0^{\omega} + n\text{-FWO} \vdash FAC^{n+1,n} \land (\mathcal{E}_{n+1}).$$

3
$$RCA_0^{\omega} + (\mathcal{E}_{n+2}) + GAC^{n+1,n} + n$$
-GWO.

Theorem

The following statements hold

$$RCA_0^{\omega} + (\mathcal{E}_{n+2}) + FAC^{n+1,n} \vdash Con(RCA_0^{\omega} + n\text{-FWO}).$$

The proof is the same except \mathcal{N} is generated by $\mathcal{M}_0 \cup \{S, \mathcal{R}_0, <, min\}$ where < is a well ordering of \mathcal{M}_n and min is the map $A \subset \mathcal{M}_n$ to the minimum element of (A, <).

Proposition.

The following statements hold.

$$2 RCA_0^{\omega} + n\text{-FWO} \vdash FAC^{n+1,n} \land (\mathcal{E}_{n+1}).$$

3
$$RCA_0^{\omega} + (\mathcal{E}_{n+2}) + GAC^{n+1,n} + n$$
-GWO.

Theorem.

The following statements hold.

$$RCA_0^{\omega} + (\mathcal{E}_{n+2}) + FAC^{n+1,n} \vdash Con(RCA_0^{\omega} + n\text{-FWO}).$$

The proof is the same except \mathcal{N} is generated by $\mathcal{M}_0 \cup \{S, \mathcal{R}_0, <, min\}$ where < is a well ordering of \mathcal{M}_n and min is the map $A \subset \mathcal{M}_n$ to the minimum element of (A, <).

Definition. (Multiple choice)

$$MC^{\sigma,\tau}$$
: $\forall A^{(\sigma,\tau)\to 0}$

$$\begin{bmatrix} \forall x \exists y ((x, y) \in A) \\ \rightarrow \exists F^{(\sigma, \tau) \to 0} \begin{pmatrix} F \subset A \\ \land \forall x \exists y ((x, y) \in F) \\ \land \forall x \exists t^0 \exists z^{0 \to \tau} \forall y^\tau ((x, y) \in F \leftrightarrow \exists s < t(y = z(s))) \end{bmatrix}$$

Proposition.

 $RCA_0^{\omega} + \mathcal{E}_{n+2} + MC^{n+1,n} + n$ -GWO.

Especially, $MC^{n+1,n}$, $GAC^{n+1,n}$ and n-GWO are equivalent over

7. Reverse mathematics related to choice.

- Introduction.
- Definition of axioms of finite order arithmetic.
- Higher rank axioms imply lower rank axioms.
- The hierarchy of comprehension axioms.
- Reverse mathematics related to comprehension.
- The hierarchy of choice axioms.
- Reverse mathematics related to choice.

Proposition.

The following statement is provable in RCA₀ $^{\omega}$ + n-FWO + n-TR: Every n-type vector space over a n-type field has a basis.

Proposition.

"Every *n*-type vector space over a *n*-type field has a basis" implies $MC^{n,n}$ over RCA_0^{ω} .

compare: The following statements are equivalent over ZF:

- 1. Axiom of choice in set theory.
- 2. Multiple choice in set theory.
- 3. Every vector field has a basis.

- Ulrich Kohlenbach, Higher Order Reverse Mathematics, Lecture Notes in Logic, 2001
- 2 James Hunter, Higher-Order Reverse Topology, Ph.D Thesis University of Wisconsin, 2008
- Stephen G. Simpson, Subsystems of Second Order Arithmetic second edition, Springer-Verlag, 2009
- 4 Thomas J. Jech, The Axiom of Choice, North-Holland, 1973
- 6 Andreas Blass, Existence of Bases Implies the Axiom of Choice, Contemporary Mathematics, vol 31(1984)

つづく?